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Abstract

A visual search task used red highlighting to cue the location 
of the target with varying degrees of probability. The 
probability that the cue was a valid indicator of target location 
on any given trial changed during the course of the 
experiment, and human subjects adapted to this change very 
rapidly. ACT-R models using the old PG-C and the new 
reinforcement learning algorithm matched human data from a 
previous experiment in this paradigm quite well, but only the 
model that learned by reinforcement mimicked human 
performance in a new experiment with dynamic highlighting 
validity.

Introduction

Life is full of environments and tasks people must interact 
with, and usually they are not perfectly predictable. How do 
people learn and behave in simple probabilistic 
environments? Previous research using a simple visual 
search task included a cue, red highlighting, that had some 
probability of indicating the location of a target or a 
distractor, termed “validity” (Fisher & Tan, 1989; 
Tamborello & Byrne, in press). In brief, the Fisher and Tan 
task consisted of finding one of four possible targets in a 
small array of distractors, where the highlighting validity 
was manipulated as a between-subjects factor. This task is 
interesting because trials in this task typically take less than 
one second to complete: will humans be sensitive enough to 
the probabilistic nature of this rapid environment to adapt 
their behavior toward efficiency, or will the time-scales 
involved be too minute for humans to detect? People do 
appear to optimize a at this level in deterministic 
environments (Gray & Boehm-Davis, 2000), but it is 
unclear whether they do so in probabilistic ones.

Tamborello and Byrne found that a cognitive model 
implemented in the ACT-R cognitive architecture (Anderson 
et al., 2004) must learn the utility of each and every move of 
visual attention in the task in order to simulate the 
differential use of highlighting (termed “sensitivity”) to aid 
visual search. Sensitivity is the response time for trials with 
invalid highlighting minus the response time for trials with 
valid highlighting. This quantity is useful as a measure of 
relative use of highlighting. Tamborello and Byrne’s  study 
implemented an ACT-R model that used a learning 
mechanism, “PG-C” (Anderson et al., 2004), that has since 
been replaced with a reinforcement learning algorithm 
(Anderson, 2007; see also ACT-R Research Group, 2007). 
In brief, ACT-R fires a series of production rules, which are 
IF-THEN rules stating under what conditions they match, 

and when they match, what the model does. When multiple 
production rules match a set of circumstances, they 
compete. ACT-R resolves the competition by selecting the 
rule with the highest estimated utility. PG-C estimated a 
production rule’s utility by multiplying the estimated 
probability (P) of a achieving a goal if that production fires 
by the value of the goal (G, in seconds), and then 
subtracting the cost (C, in seconds) of firing that production.

The reinforcement utility learning mechanism now used 
in ACT-R instead calculates the current production rule’s 
utility as a function of the amount of reward propagated to 
that production rule. Over many applications the production 
rule’s utility converges on the average amount of reward it 
receives. Others (e.g., Gray et al., 2006) have claimed that 
reinforcement learning algorithms work much better than 
PG-C in certain probabilistic environments, particularly 
those with costs and rewards at small time scales, such as 
the Fisher and Tan task. Indeed, Tamborello and Byrne (in 
press) speculated that this may be why their PG-C model 
failed to fit their human data very well at low validities. Part 
of the motivation for this study was to determine whether 
the reinforcement learning algorithm could do better with 
low validity highlighting than the PG-C algorithm. 
Additionally, a new experiment examined human ability to 
cope with changing environmental probabilities. Could a 
model built for Tamborello and Byrne’s experiment 
generalize to the new one? Any model that hopes to explain 
how people behave in probabilistic environments of small 
time-scales will need to capture major effects from both 
studies. 

The ACT-R Models: Static Validity

Two ACT-R models simulated runs on the current dynamic 
validity experiment as well as the static validity experiment 
from Tamborello and Byrne (in press). The previous 
experiment was identical to the current study’s except that 
highlighting validity remained static throughout the 
experiment and a wider range of validity conditions were 
run. In the static validity experiment, highlighting validity 
was set as a between-subjects factor at increments of 12.5% 
all the way from 0% to 100%. The same models were run on 
both the static and dynamic validity experiments.

The models were identical except for which utility 
learning algorithm they used, PG-C or reinforcement. On 
any given highlighted trial, the red item was set as the 
default visual location. For all trials, the default hand 
location was set to left hand with index finger on “4.” With 
every move of attention, two productions competed: 



“attend-red” and “avoid-red.” Attend-red requested a move 
of visual attention to the red item, or else avoid-red 
requested the location of an unattended black item. If the 
attended item was red and the target (a “valid” trial), the 
model could  press the appropriate key after a single shift of 
visual attention. If the attended item was red and a distractor 
(an “invalid” trial), the reinforcement model propagated a 
reward of -0.2 (the PG-C model marked a failure) and 
attended the nearest unattended black item until the target 
was found. If the model had initially avoided the red item, it 
could still choose to attend it at any time. This is also a 
crucial production conflict point because in the case of a 
standard trial, the models simply moved attention to the 
nearest unattended item until the target was found. The 
reinforcement model began a simulation run with a prior 
utility of 0.01 for the production that would find the red 
item after the black distractor had been attended. The PG-C 
model had 75 successes and 25 failures for this same 
production’s priors.

Results and Discussion

Both models fit data from the static highlighting study (the 
original Tamborello and Byrne experiment) fairly well. The 
reinforcement model correlated 0.91 (mean deviation 115 
ms) with the human data, while the PG-C model correlated 
0.89 (mean deviation 110 ms). Figure 1 depicts mean 

response times (RTs) on valid and invalid trials for the 
human data, the reinforcement model, and the PG-C model.

There is a particular difficulty for the models in the 
previous experiment. Assuming subjects really did keep 
their fingers on the 1–4 number keys, and that the location 
of the red item was immediately available at trial onset, 
ACT-R predicts they should take about 300 ms to complete 
a validly highlighted trial when they initially attend to the 
highlighted item: 50 ms to decide to attend to the red item, 
85 ms to move visual attention, 50 ms to decide to press the 
appropriate key, then 120 ms to complete the motor 
movement. Yet in the study reported by Tamborello and 
Byrne (in press), humans averaged 602 ms to complete 
highlighted trials when highlighting was 100% valid. That 
is, given that half of all trials have no highlighting at all, the 
other half have valid highlighting, and no trials ever have 
invalid highlighting, people take twice as long on average to 
complete valid trials as ACT-R’s action latencies predict. 

To average 600 ms on a trial that should take 300 ms in a 
best-case scenario, in the wort case subjects must be taking 
approximately 900 ms to complete the trial, which is about 
as long as it would take to search the entire five-item 
display. Were people really avoiding highlighting as often as 
using it even when it is always valid? Can either the 
reinforcement or PG-C model capture that effect, or are 
people perhaps engaging in some action not captured by the 
models? Humans averaged 602 ms to complete highlighted 
trials at 100% validity, whereas the reinforcement model 
averaged 454 ms and the PG-C model averaged 409 ms.

Figure 1. Mean response times of the human data, 
reinforcement model, and PG-C model for valid and invalid 

trial types for Tamborello and Byrne (in press) data.

Figure 2. Mean sensitivity per validity condition for 
humans, the reinforcement model, and the PG-C model for 

Tamborello and Byrne (in press) data
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Figure 2 shows the sensitivity exhibited both by humans 
and the two models as a function of validity condition. 
Clearly the reinforcement model does a better job in terms 
of absolute fit, though the slopes generated by the two 
models were about equally off (reinforcement model 
correlation was 0.56; PG-C was 0.53). Interestingly, the PG-
C  model generated a function which was too steep, and the 
reinforcement learning model a somewhat too shallow 
slope.

The Dynamic Validity Experiment

Method

The dynamic validity experiment replicated Tamborello and 
Byrne’s (in press) static validity experiment, except that the 
validity levels changed during the experiment. 

Participants. One hundred nine Rice University 
undergraduates participated to fulfill experiment 
participation requirements for their psychology classes. 

Design. The experiment incorporated a mixed design 
utilizing two within-subjects variables, block and trial type 
(standard, meaning no highlighting; valid, the target was 
highlighted; and invalid, a distractor was highlighted), and 
three between-subjects variables: magnitude of validity 
change, direction of validity change, and change onset 
timing. Magnitude of validity change refers to by how many 
percentage points the highlighting validity proportion 
changed, either 34% or 68%. Direction of validity change 
refers to whether the highlighting became more valid or less 
valid. Finally, the experiment was divided into six blocks, 
affording short rest periods for the subjects between each 
block. The change in validity occurred at the beginning of 

either block three (termed “early”) or block five (“late”). 
Thus the total number of between-subjects conditions was 
eight.

 Procedure. Subjects were instructed to place the fingers 
of their dominant hand on the 1, 2, 3, and 4 keys of the 
number row at the beginning of the trials and to keep them 
there throughout the experiment. At the start of a trial, 
subjects viewed crosshairs for 500 ms at the intended 
fixation point, in the center of the computer screen. This 
was then replaced by a horizontal array of five different 
numerals. The numerals were printed in black 14-point 
Times New Roman font on a 17-inch CRT computer 
monitor at a resolution of 1024 by 768 pixels. The 
highlighting simply used red text. One numeral from the 
potential target set, {1 2 3 4} was chosen at random, while 
four distractors from the distractor set {5 6 7 8 9} were also 
chosen at random. The target and distractors were sorted 
randomly. The subjects’ task was to find the number in the 
display that was less than five and immediately press the 
corresponding key on the number row at the top of the 
keyboard. Subjects were instructed to respond as quickly as 
possible without making any mistakes. The array 
disappeared upon the subject’s key press, and one second 
later the next trial began. In the event of an incorrect 
response, the computer beeped and paused the experiment 
for two seconds. This time penalty discouraged simple 
guessing. 

Depending upon which condition a subject was assigned 
to, the initial validity they encountered was 16%, 34%, 68%, 
or 84%. Blocks consisted of 60 trials, and with the onset of 
the third or fifth block the validity level changed. Subjects 
assigned to the 16% initial validity condition then received 
84% validity, and vice versa. Similarly, subjects assigned to 

Figure 3. Mean human sensitivities for large change 
conditions.

Figure 4. Mean human sensitivities for small change 
conditions.
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the 34% initial validity condition then received 68% 
validity, and vice versa. The experiment required a little less 
than 30 minutes for subjects to complete. Instructions did 
not indicate that the highlighting validity rate would change 
during the course of the experiment. In many real-world 
tasks of searching some visual display, such as a web page, 
the user is not informed a priori about how useful visual 
cues will be. 

Since subjects’ sensitivity to changes in validity was 
assessed by changes in response times, we attempted to 
avoid confounding with practice effects. Therefore, subjects 
had a full block of 60 practice trials before beginning the 
actual experiment. The important task components to 
practice were searching the field to find the target and 
pressing the appropriate button in response. Allowing 
subjects to acclimatize to whatever level of highlighting 
validity they were assigned to before response times are 
actually recorded might prove detrimental to the attempt to 
assess their sensitivity to the highlighting validity. 
Therefore, practice trials were all of the standard type (no 
highlighting at all).

Results and Discussion

Outliers were removed prior to statistical analysis. This was 
done both for single trials and entire subjects. An outlier 
trial was defined as a trial in which the response time was 
more than three standard deviations from the subject’s 
overall mean. Those response times were replaced with the 
subject’s mean response time. Each subject’s mean response 
time per condition was similarly screened against the mean 
response time for all subjects, per condition. Any subject 
whose mean response time was more than three standard 
deviations from the mean response time for all subjects in 

more than one condition was considered an outlier subject. 
Two such subjects were found, and their data were removed 
from further analysis. Figure 3 depicts the mean sensitivity 
for each of the four conditions with large validity proportion 
changes while Figure 4 depicts those means for the four 
conditions with small validity proportion changes.

The slopes of the change in sensitivity for the block 
preceding change onset, the block of the change onset, and 
the block after the change onset were examined. These three 
blocks represent prior sensitivity, sensitivity under 
adjustment, and posterior sensitivity, respectively, and were 
therefore of most interest for analyzing changing sensitivity 
in subjects as they adjusted to new highlighting validity 
proportions. Among the factors size of change, direction of 
change, and onset of change, only direction had any 
significant effect on slope, F(1,98) = 56.13, p < 0.01. There 
was also a reliable interaction of size with direction, F(1, 
98) = 13.62, p < 0.01. All other F’s < 2, p’s  0.17. The 
direction by size interaction coupled with the main effect of 
direction means that change direction matters, but it matters 
more when the change is large than small. 

Did subjects in the decreasing validity conditions change 
their sensitivity faster in response to the changing validity 
than did subjects in the increasing validity conditions? 
Presumably subjects would notice a drop in highlighting 
validity faster than they would notice an increase in validity 
because of their greater attention paid to a higher prior level 
of validity. In fact the mean absolute slope for the increase 
conditions was 56.8 ms per block, and 82.6 for the decrease 
conditions. A t-test of the absolute slope for the two groups 
failed to yield a reliable difference in degree of sensitivity 
response to the changing validity in the two groups, t(104) = 
1.92, p = 0.58. The observed effect size in this analysis was 

Figure 6. Mean reinforcement model sensitivities for 
small change conditions.

Figure 5. Mean reinforcement model sensitivities for large 
change conditions.
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medium-small, Cohen’s d = 0.38, and the power to detect an 
effect of that size was 0.48. The current evidence is 
therefore inconclusive as to whether the absolute rate of 
change in sensitivity was different depending upon whether 
subjects experienced increasing or decreasing validity. 

We were also surprised by the lack of reliable effect of 
late vs. early change; That is, it did not seem matter how 
much prior experience subjects had with a particular level of 
validity. Subjects adapted equally well with two additional 
blocks of experience in a particular validity condition.

The ACT-R Models: Dynamic Validity

As for the dynamic highlighting task, the reinforcement 
model correlated 0.64 with the human data (mean deviation 
= 115 ms), while the PG-C model correlated 0.75 (mean 
deviation = 110 ms). Figures 5 through 8 plot mean 
sensitivity for the reinforcement and PG-C models. 
Compare these with Figures 1 and 2. Note how the 
reinforcement model generally shows the same qualitative 
trends in its sensitivity functions as do humans. The PG-C 
model has some hint of those trends, but while the effect 
size for the large decrease conditions is on the order of 200 
ms for the humans and 100 ms for the reinforcement model, 
it only approximately 50 ms for the PG-C model. Note also 
how the overall size of the sensitivities keeps increasing 
throughout the duration of the experiment for the PG-C 
model (linear F (1, 7) = 29.11, p = 0.001), but not the 
human data (linear F (1, 7) = 0.88, p = 0.38) nor the 
reinforcement model (linear F (1, 7) = 0.04, p = 0.84) 
(Figure 9). The sensitivity function of the reinforcement 
model generated a slope more closely resembling that of 

humans (r = 0.86, p = 0.007) than did the PG-C model (r = 
0.25, p = 0.55) (Figure 10).   

The generally better qualitative fit of the reinforcement 
model over the PG-C model suggests that learning in a 
domain like the present study’s experiment, a dynamic, 
probabilistic one of small scale, probably requires a flexible 
strategy that is more strongly influenced by recent 
experience than more distantly past experience. One major 
difference between the standard PG-C algorithm and the 
reinforcement algorithm is that the reinforcement algorithm 
uses the last reward propagated to the currently rewarded 
production to compute the current reward. That last reward, 
of course, included its previous reward, and so on. However, 
the PG-C algorithm weighted all past events the same. 
Lovett (1998) implemented a model of a probabilistic task 
using a variant of the PG-C utility learning algorithm that 
incorporated a decay mechanism, though unfortunately this 
algorithm is computationally expensive. It may be that the 
need for a decay mechanism to model a probabilistic task 
indicated the necessity for a fundamental change to ACT-R’s 
utility learning algorithm that would discount distally past 
experience. 

On a side note, a crucial factor in generating reasonable 
fits to the human data was the degree of  prior utility 
advantage for the production that would seek the red item 
after a black distractor had been fixated. Models which set 
this prior too low actually exhibited strong, negative initial 
sensitivity. We were surprised by how unstable the model’s 
performance was as a function of this single prior utility, 
which again suggests the critical importance of small time 
advantages. 

Finally, the astute reader will have noticed that the models 
either attend to the highlighting or avoid it, with no strategy 

Figure 8. Mean PG-C model sensitivities for small change 
conditions.

Figure 7. Mean PG-C model sensitivities for large change 
conditions.
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that simply ignores the highlighting. We did this because the 
highlighting provides information about probable target 
location as long as validity is not equal to random chance of 
any one item being the target. When validity is low, one can 
use highlighting to rule out one search location, and thus by 
avoiding that location stand to gain approximately 200 ms 
over a strategy that simply ignores the information provided 
by highlighting. Gray et al. (2006) demonstrated that people 
do tend to be efficient in tasks that take place at small time 
scales. If Gray et al.'s findings generalize to the Fisher & 
Tan task, then it stands to reason that people will take 
advantage of information at their disposal for the sake of 
speed. However, it would still be desirable to actually test 
this assumption in the future with models that can ignore 
highlighting rather than or in addition to avoiding it so that 
such a possibility could be ruled out by data that speak 
directly to the matter rather than by assumptions based on 
prior evidence.

References

ACT-R Research Group. (2007). Unit 6: Selecting 
Productions on the Basis of Their Utilities and Learning 
these Utilities. Accessed on January 31, 2007 from http://
act-r/psy.cmu.edu/

Anderson, J. R. (2007). How can the human mind occur in 
the physical universe? New York: Oxford.

Anderson, J.  R.,  Bothell, D., Byrne, M. D., Douglass, S., 
Lebiere,  C., & Quin,  Y. (2004). An integrated theory of 
the mind. Psychological Review, 111, 1036-1060.

Fisher,  D.L., & Tan,  K.C. (1989). Visual displays: The 
highlighting paradox. Human Factors, 31(1), 17 – 30.

Gray, W. D.,  & Boehm-Davis,  D. A.  (2000). Milliseconds 
matter: An introduction to microstrategies and to their use 

in describing and predicting interactive behavior. Journal 
of Experimental Psychology: Applied, 6, 322-335.

Gray, W. D., Sims, C. R., Fu, W. T., & Schoelles, M. J. 
(2006). The soft constraints hypothesis: A rational 
analysis approach to resource allocation for interactive 
behavior. Psychological Review, 113(3), 461 – 482.

Lovett, M. (1998). Choice. In J.  R. Anderson & C. Lebiere, 
The atomic components of thought. Mahwah, NJ: 
Erlbaum.

Tamborello, F. P.,  II,  & Byrne, M. D. (in press). Adaptive 
but non-optimal visual search behavior in highlighted 
displays. Journal of Cognitive Systems Research.

Figure 10. Slope of sensitivity functions, collapsed across 
timing conditions. Error bars indicate standard error of the 
mean. Note the interaction of change size and direction in 

the human and reinforcement model data.Figure 9. Sensitivity across experiment blocks.
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